Simultaneously Modelling Conditional Heteroskedasticity and Scale Change

نویسنده

  • Yuanhua Feng
چکیده

This paper proposes a semiparametric approach by introducing a smooth scale function into the standard GARCH model so that conditional heteroskedasticity and scale change in a nancial time series can be modelled simultaneously. An estimation procedure combining kernel estimation of the scale function and maximum likelihood estimation of the GARCH parameters is proposed. Asymptotic properties of the kernel estimator are investigated in detail. An iterative plug-in algorithm is developed for selecting the bandwidth. Practical performance of the proposal is illustrated by simulation. The proposal is applied to the daily S&P 500 and DAX 100 returns. It is shown that there are simultaneously signi cant conditional heteroskedasticity and scale change in these series. JEL classi cation: C22, C14

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Testing and modelling autoregressive conditional heteroskedasticity of streamflow processes

Abstract. Conventional streamflow models operate under the assumption of constant variance or season-dependent variances (e.g. ARMA (AutoRegressive Moving Average) models for deseasonalized streamflow series and PARMA (Periodic AutoRegressive Moving Average) models for seasonal streamflow series). However, with McLeod-Li test and Engle’s Lagrange Multiplier test, clear evidences are found for t...

متن کامل

A Multivariate Perspective for Modelling and Forecasting Inflation’s Conditional Mean and Variance

We test the importance of multivariate information for modelling and forecasting inflation’s conditional mean and variance. In the literature, the existence of inflation’s conditional heteroskedasticity has been debated for years, as it seemed to appear only in some datasets and for some lag lengths. This phenomenon might be due to the fact that inflation depends on a linear combination of econ...

متن کامل

Improving Forecasts of Generalized Autoregressive Conditional Heteroskedasticity with Wavelet Transform

In the study, we discussed the generalized autoregressive conditional heteroskedasticity model and enhanced it with wavelet transform to evaluate the daily returns for 1/4/2002-30/12/2011 period in Brent oil market. We proposed discrete wavelet transform generalized autoregressive conditional heteroskedasticity model to increase the forecasting performance of the generalized autoregressive cond...

متن کامل

Heteroskedasticity as a leading indicator of desertification in spatially explicit data

Regime shifts are abrupt transitions between alternate ecosystem states including desertification in arid regions due to drought or overgrazing. Regime shifts may be preceded by statistical anomalies such as increased autocorrelation, indicating declining resilience and warning of an impending shift. Tests for conditional heteroskedasticity, a type of clustered variance, have proven powerful le...

متن کامل

Option Pricing in a GARCH Framework

There is a compelling need to accurately and efficiently compute option values. Existing literature shows that models based on constant stock volatilities have been widely used in option valuation. However, stock volatilities change constantly in real life situations. The introduction of the Auto Regressive Conditional Heteroskedasticity (ARCH) model and subsequently, the Generalized Auto Regre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002